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Abstract

Recognizing 3D modeled objects through align-
ment of object and sensor features requires a
means of predicting matchable features. This
paper presents a system which performs on-
line feature prediction for CAD modeled ob-
jects and tightly couples prediction with match-
ing. For the ATR domain, detailed CAD mod-
els of objects are available in this application,
as is both range and optical imagery. Match-
ing begins with an initial hypothesis which is
refined through an iterative generate-and-test
procedure. Matching interleaves feature predic-
tion and adjustment of model-to-sensor geom-
etry until a locally optimal match is obtained.
In addition, sensor-to-sensor geometry is also
adjusted, allowing the algorithm to correct mi-
nor mis-registrations between range and opti-
cal imagery. While the resulting match is lo-
cally optimal in terms of the complete space of
possible matches, it globally preserves the 3D
constraints implied by sensor and object geom-
etry. Results on real data are presented which
demonstrate the algorithm correcting for up to
30° errors in initial orientation and 25m errors
in initial translation.

1 Introduction

Detailed CAD models offer rich geometric constraints
for object recognition. However, the object model it-
self is seldom in a form suitable for direct matching to
image features. Significant steps must be taken to map
from the stored model representation to features likely
to be detectable. This paper presents both a feature pre-
diction algorithm and a local search matching algorithm
which utilizes this prediction capability to refine features
during matching in a generate-and-test fashion.

This work was sponsored by the Advanced Research
Projects Agency (ARPA) under grant DAAH04-93-G-422,
monitored by the U.S. Army Research Office.

Appears also in the Proceedings of the 1996 ARPA Image
Understanding Workshop.

J. Ross Beveridge
Colorado State University
ross@cs.colostate.edu

Common approaches to model feature prediction have
focused upon developing off-line data structures which
capture feature visibility information associated with ge-
ometry alone [PD87, Pla88, Ike87]. This process usually
begins with the division of all possible viewpoints into
sets of constant model topology [KvD76, KvD79]. From
these regions, silhouette and other model features can be
determined and stored [SD92, KD87] for later retrieval
during matching. Finally, some promising recent work
has used statistical modeling to predict feature visibility
based upon both geometry and lighting [PHK91, WI93].

In contrast to much of this work, we are promoting an
on-line prediction capability which performs the map-
ping from stored model to predicted features dynami-
cally as part of the recognition process. A key to making
this approach feasible is the development of algorithms
which run many, if not all, computations in parallel on
standard graphics acceleration hardware. This on-line
capability permits us to develop a tight coupling between
feature prediction and matching: modifying the features
expected to be visible as matching progresses.

The algorithms presented here are being developed
to perform final verification within a larger Automatic
Target Recognition (ATR) system [BHP95]. Thus, up-
stream color-detection [BDHR94] and range boundary
matching algorithms [Bev92] provide hypotheses indicat-
ing a specific target is at roughly the following position
and orientation relative to the sensor platform. Con-
sequently, the primary aim of the matching algorithm
presented here is to reliably refine the pose estimate and
match between object model and sensor features.

In this domain, both range and optical imagery is
available. The addition of range data is extremely help-
ful, since ATR problems are typically more difficult than
other commonly studied object recognition problems.
Often complex objects are viewed at great distances,
in scenes where backgrounds may contain significant
amounts of clutter. Vehicles usually blend in well with
the surroundings and may be partially obscured.

While having both range and optical imagery is help-
ful, the integration of these two heterogeneous sensors
introduces an image registration problem. In an ideal
world, the registration mapping between sensors could




be uniquely determined through off-line calibration. Un-
fortunately, such estimates are usually only accurate to
within several pixels. Thus, in addition to refining the
estimated 3D pose of the object relative to the sensor
suite, our algorithm also refines the pixel-to-pixel regis-
tration estimate between the range and optical sensors.
We use the term coregistration to describe this combined
process of simultaneously adjusting object pose and sen-
sor registration estimates.

The remaining portion of the paper is divided into
three main parts: a detailed discussion of the feature
prediction algorithm, how feature prediction is used by
the local search, and results of the approach on two im-
ages.

2 3D Model Feature Prediction

To achieve coregistration of an object model to optical
and range imagery, model features suitable for matching
must first be extracted from the CAD model. The role
of prediction is to select which features to extract. Here,
3D line segments are extracted for matching to optical
imagery. For range imagery, the choice is elementary:
surfaces visible from the estimated viewpoint are sam-
pled.

For optical imagery, selection must not only take into
account the issue of physical visibility, but of expected
lighting as well. Viewing angle alone is sufficient to de-
termine which model features generate the object silhou-
ette. Since it is assumed that silhouette features are rel-
atively likely to stand out against the background, they
are extracted. However, using only silhouettes leads to
ambiguity in the matching, and therefore features rep-
resenting internal detail are extracted as well. Which
of the many possible internal features to select is based
upon a simple lighting model.

To test our algorithms on real data, we have range,
color and IR imagery which we and Martin Mari-
etta collected at Fort Carson, Colorado in November
1993 [BPY94]. The data contains many different im-
age triplets, out of which two pairs of range and color
images are used for demonstration here. The first im-
age set, Figure 2, is a simple proof-of-concept image in
which the vehicle is roughly 50m away in a fairly open
area. The second image set, Figure 3, is considerably
more difficulty in that the vehicle is approximately 100m
away on a hillside.

Highly detailed models of the vehicles in our Fort Car-
son dataset exist in the CAD model format known as
BRL/CAD [U. 91]. Algorithms to reduce the model
complexity to a level more closely related to the sensor
granularity have already been developed [SBG95, Ste95].
From these simpler models, features to be used in the
matching process are then obtained. Currently, we have
models for an M113 APC and an M60. This paper deals
only with the M113, but work has been done matching
the M60 [BSS96].

2.1 Predicting 3D Line Segments

The silhouette of an object is a valuable recognition
cue when dealing with two-dimensional optical im-
agery [Mar77, Koe84]. Many systems have been devel-
oped to recognize 3D objects based on their projected
2D silhouettes [WW80, LT90, WMAS84], and while work
using the 3D edges directly is rare [CA87] it is usually
concerned with linking 2D image features to 3D model
features. Our method approaches the problem from the
other direction: we are tying the 3D model edges to the
2D image data.

Hoogs has noted that there exist several forms of con-
textual information which can be exploited when tack-
ling computer vision problems: geometric, temporal,
functional, radiometric, and image context [HH94]. In
particular, he has developed a statistical framework for
estimating the probability that a given edge will be dis-
tinctive enough to be found in the sensor imagery. Our
early experiments using only silhouette lines in our do-
main suggest there is too much ambiguity for the sil-
houette to adequately constrain the match. Since others
have observed improved performance when internal edge
structure is added [CSR93, CS94], our feature prediction
utilizes simple radiometric and temporal context infor-
mation in order to predict the internal structure likely
to be visible in the optical imagery.

2.1.1 Silhouette Lines

To determine which parts of the CAD model produce
the silhouette, a unique color is first assigned to each
existing face. This color acts as an index into a hash
table of 3D faces. The model is then rendered from
the hypothesized viewing orientation. Rendering is per-
formed on a hardware Z-buffer, and hence can be done
very quickly. Running on a Sparc 10 with a ZX acceler-
ator, this process takes roughly 0.3 seconds for a model
containing 250 faces. The colors of the resulting pixels
indicate which faces are visible. Pixels adjacent to the
background color, which is also unique, contribute to the
model silhouette. Thus, if the background color appears
in a pixel’s eight-connected neighborhood, the associated
face lies on the silhouette.

Subsequent search determines which specific face
boundaries (edges) generate the silhouette. An edge is a
possible sithouette edge only if one of the two bounding
faces is visible [SD92]. This step may leave some edges
which are actually internal as hypothesized silhouette
edges, and it also does not deal with self-occlusion. A
clipping algorithm is then used to discover and discard
those edges and portions of edges which are not part
of the sithouette. The clipping process projects the 3D
model edge endpoints onto the image plane. A line fol-
lowing algorithm then traverses the segment to find the
parametric end-points which correspond to the begin-
ning and ending portion of the silhouette edge. Because
an orthographic projection is used to render the model,
parametric end-point values may be applied directly to



the corresponding model edges to produce the resulting
3D silhouette edges.

2.1.2 Internal Lines

To determine if an edge is likely to cause a significant
change in illumination in an image, an estimate of the
location of the major light source, the sun in our images,
must be made available to the feature prediction algo-
rithm. The sun is modelled as an area light source, and
the vector to the sun is calculated using a long/lat esti-
mate, time of day, date, and compass orientation [PP76].
All of this information is available for our current data
set. Once the vector is determined, it provides the di-
rection to the sun for the entire scene, and can be used
to predict the internal model edges.

The internal edge prediction is run after the silhou-
ette extraction phase, and therefore all visible faces are
known. The sun vector is then rotated into the proper
compass orientation, and the dot product of the vector
with the normal of each face is determined. Each edge
of the visible faces is then examined independently, and
marked as being a possibly significant internal edge. Of
this list of possible internal edges, each face which shares
the edge is examined and if the predetermined dot prod-
ucts of the two faces with the sun vector are of the same
sign, the edge is removed from this list. This simple test
determines edges for which light will be cast onto only
one of its visible faces. :

The final pass of the algorithm uses a clipping algo-
rithm similar to that used in obtaining silhouettes: the
3D edge endpoints are projected onto the image and the
parametric endpoint values are determined. The only
difference is that our process does not require the edge
to lie on the silhouette, that one of its faces needs to
be visible. After both silhouette and internal edges are
determined for a given pose hypothesis, shorter lines
are discarded using a user specified minimum distance
threshold. Figures 2b and 2e show the silhouette and
internal edges used in the matching process for the pose
hypothesis given in Figures 2a and 2d.

2.2 Predicting Sampled Surfaces

A 3D sampled surface is generated in a manner which,
in simple terms, simulates the operation of the actual
range sensor. The CAD model is transformed into the
range sensor’s coordinate system using the current esti-
mate of the target position and orientation. Based on
the characteristics of the range device, rays are cast into
the scene and intersected with the 3D faces of the CAD
model. The results of the rendering step used to extract
the silhouette are used here to limit ray intersections to
only those faces known to be visible. The closest face in-
tersection is stored as the depth of the current position.
By design, noise factors are neglected when generating
model features: the intention is to generate a high qual-
ity model. Noise is dealt with later when matching the
model! features to the sensor features. Figures 2c and 2f

show the sampled surface information used in the match-
ing process for the pose hypothesis given in Figures 2a
and 2d.

-3 Local Search to Achieve

Coregistration

To make use of model features believed to be visible, two
items must first be developed: an error function relating
model features to the data, and a search mechanism for
finding a pose estimate which minimizes that error. In
addition to defining the most desirable match, the error
function also directs the search process by suggesting
local improvements to a current ‘best” match.

The match error function which defines the quality of
a match M may be written as:

Em(e, F)>0 YeeC, FeR® (1)

The first argument to this function, ¢, represents a par-
ticular correspondence mapping between model and sen-
sor features. The second argument, F, represents the
coregistration of the sensors relative to the model. In
the most general case, the correspondence space C' is
the super-set of all possible pairs of sensor and model
features. :

Observe that C denotes the set of correspondences be-
tween the model features and features derived from both
range and optical imagery. This, ¢, represents the pair-
ing between corresponding sampled surface features from
the target model and sensed range points in the LADAR
imagery. The mapping ¢ also indicates the correspon-
dence between line segments and the optical imagery.

The coregistration, F, represents the geometric rela-
tionship between the sensors and the model. In the de-
velopment below, this is an eight place vector: six val-
ues encode the pose of the target relative to the optical
sensor (3 rotation and 3 translation), and two values en-
code the planar translation of the optical image plane
relative to the range sensor’s image plane. A detailed
justification of this particular parameterization appears
in [J. 96].

Two different matching strategies emerge depending
on whether the search is conducted in the space of cor-
respondences, C, or the space of coregistration parame-
ters: F € R8. Searching in correspondence space for a c*
which minimizes equation 1, an optimal coregistration
estimate for a given correspondence, ¢, may be deter-
mined using a non-linear least-squares procedure [SB94].
Searching in coregistration space, given a coregistration
estimate, F, it is possible to determine a best choice of
corresponding features ¢*. A local assignment procedure
based upon proximity of features under transformation,
F, is used to determine c*.

While increasing the number of potentially matching
features increases the size of the correspondence space
exponentially, the dimensionality of the coregistration




space is fixed: R® for the case treated here. Conse-
quently, search in coregistration space has an advan-
tage over search in correspondence space. The term
coregistration-space search is used to refer to this
approach.

3.1 Coregistration-Space Search

The goal of any type of local search is to minimize
some error function through iterative improvement. In
coregistration-space search, the error function measures
the relationship between the predicted model features
and the data. This measurement takes into account both
range and optical features, but treats the two cases some-
what differently. For the optical features, the error is a
function of the gradient response to a tuned filter for
each line segment [SWF95]. For range, the error mea-
sure is a function of the Euclidean distance from points
on the predicted model sampled surface to their nearest
neighbor in the range image data.

The local search itself samples each of the 8 dimensions
of the coregistration space about the current estimate.
Clearly, the step-size used in this sampling is important.
The general strategy implemented moves from coarse to
fine sampling as the algorithm converges upon a locally
optimal solution. The initial scaling of the sampling in-
terval is determined automatically based upon moment
analysis applied to the current model and sensor data
sets.

Feature

Prediction

Pose Pose New
Estimate Refinement Pose

Figure 1: Pose Refinement

The search process forms an iterative generate-and-
test loop (Figure 1) in which the current coregistration
hypothesis F is used to predict a set of model features
which are in turn used in the error evaluation function.
A neighborhood of moves is then examined and the best
move, the one with the lowest error, is taken. The fea-
tures are re-generated for the new coregistration esti-
mate and the process continues.

The neighborhood decouples the 8 dimensions of the
coregistration space into three distinct sets of possible
moves. The first set represents the 6 dimensions which
encode the 3D pose of the sensors relative to the object.
The other two represent changes in registration between
the two sensors. Search examines pose moves first until
a local optimum is reached. Then and only then are
changes in sensor registration considered. If a change is
made in sensor registration, then additional changes in
the pose are again considered. Hence, control alternates
between refining pose and refining registration.

When no further progress is possible along any dimen-
sion, the resulting 8 values are returned as the locally op-
timal coregistration estimate. Initial results of the search
have shown that the local optima in color space, and the
local optima in range space, do not usually coincide. By
searching for the model in both the optical and range
imagery, local optima in each will be rejected in favor of
the global solution.

3.2 Error Terms

The error function to minimize, Erq(F), may be thought
of as consisting of two main components: a weighted
term representing how well the 3D model line segments
fit the current color image, and a weighted term repre-
senting how well the sampled surface information fits the
range data. These two terms are combined to form the
overall match error:

EMm(F) = amBmolF) + 1= am)Em(F) (2)

Each sensor term can be further broken down into two
weighted terms: an omission error and a fitness error.

Enm,s(F) = BsEyit,s(F) + (1 = Bs)Eom,s(F)  (3)

The subscript (S) is replaced below with o for optical and
r for range. The fitness error Ey;; s(F) represents how
well the strongest features (as determined by a thresh-
old) match, and the omission error E,n, s(F) penalize
the match wherein model features are left unmatched.
This happens when no adequate matching features can
be found in the sensor data.

3.2.1 Optical Fitness Error: Ey;; o(F)

The optical fitness error represents how well each
model line fits the underlying image. The process of
determining the error begins by projecting the predicted
3D model edges into the color image. Projection is pos-
sible because both the intrinsic sensor parameters and
the approximate location of the target are known. The
parameters for the color sensor have been determined
off-line using calibration targets [BHP94]. After each
edge is projected, a gradient mask tuned to the precise
expected orientation is applied to the pixels lying under
each line. The gradient response, G Line(k), is normal-
ized to the range [0,1]. The derivation of the response
is presented in [Mar96].

A threshold (v) is used to discard lines with weak re-
sponses, and the gradient response is converted to an
error term for each line:

. = (1 - éLinE(k)) éLine(k) <wv
Bpine(k) = { 0 otherwise (4)

The fitness error is then formed by summing the error
terms, and normalizing by the number of lines ! not dis-
carded (lines whose response was set to 0):

Z EL'ine (k)

Efit,o(]:) - kEModelLinles (5)




3.2.2 Range Fitness Error: Ej; ,(F)

The range fitness error represents how well the pre-
dicted 3D sampled surface model points fit the actual
range data. To reduce computation, only a subset of
the range data is examined at a time. When the model
sampled surface information is being obtained, the range
image plane bounding box is determined. Only those
data points lying inside the model bounding box (plus
some margin of error) are examined: let this set of data
points be (¢), and let (x) be the set of all predicted
model points.

Computing fitness begins by measuring the Euclidean
distance between a single model point i € ¥ and each
data point j € 1. The distance is measured with the
model points (x) placed relative to the data using the
current coregistration estimate F:

D(i,5)iexjew = li — 3 (6)

The nearest neighbor of each model point 4 is that which
minimizes the Euclidean distance D. This distance to
the nearest neighbor may be written as:

ﬁpoint(i) = E(%]) Vk € ¢ D_(Z)]) S .D—(lak) (7)

The fitness error is then a function of these nearest neigh-
bor distances.

~

. N\ Hpoint(i) Hpoint(i) <T
Epoins (i) = { 0 otherwise ®)

The threshold (7) places an upper bound on the dis-
" tance between matching features, and is set to discard
points considered too far away to match. The total fit-
ness for range is then summed over the matched points
and normalized to lie in the range [0,1]. Normalization
takes account of the number of matched points p and the
maximum allowable distance 7:

ZEpoint(i)
) _ex
Eruo(F) = S Q
3.2.3 Omission Error: E,p, s(F)

Omission accounts for weak responses in optical and
unmatched points in range. Omission is needed to
prevent fixation upon very small numbers of strongly
matched features. Omission introduces a bias in favor of
accounting for as many model features as possible. The
general form of the omission error is:

e* v —1
=] =5 a#0
Eom,S(]:) { w a=0 (10)

where w is ratio of unmatched model features over the
total number of model features. The parameter o in-
troduces a non-linear bias which essentially reduces the
penalty of small amounts of omission while increasing the
penalty for large amounts of omission. A detailed expla-
nation of this relationship may be found in [Bev93]. For

the optical omission error, Eom o(F), w is the number of
unmatched lines over the total number of lines.

For the range data, omission is measured in both di-
rections: model-to-data and data-to-model. Because C
allows many model features to match a single range fea-
ture, the matching algorithm can be drawn away from
the true solution during the first few iterations of the
search. Including a term to measure how much range
data is omitted from the match corrects this problem.
Thus, range omission is given by:

1, (e*P—1 e*9i—1
Eom o (F) = { 2 ( =l T el ) o 7_68 (11)
2 o=

where p is the ratio of unmatched model points over the
total number of model points, and ¢ is the number of
unmatched data points over the total number of data
points.

4 Results

Initial testing of the combined feature prediction and
matching algorithms is being done on pairs of range and
optical imagery from the Fort Carson dataset [BPY94].
Results for two shots with varying level of difficulty are
presented. A shot is defined as a pair of approximately
registered range and optical images.

The first shot, Shot 20 from Vehicle Array 5, contains
an M113 APC sitting in an open field approximately 50
meters from the sensor. This shot is relatively simple
and was selected as a proof-of-algorithm example. The
other shot, Shot 35 from Vehicle Array 9, shows the same
M113 APC side-on at approximately 100m with its nose
point slightly down relative to the rear of the vehicle.

For each shot, matching is initialized using a coregis-
tration estimate provided by a range template matching
algorithm [Bev92]. The estimate provides both an ori-
entation and a translation estimate for the vehicle rel-
ative to the two sensors. The template matching al-
gorithm ranks the set of alternative estimates using a
confidence factor. These initial hypotheses are needed
in order to provide a starting point for our matching al-
gorithm. However, early experiments suggest these hy-
potheses can be off by as much as 30° in orientation and
25m in translation. On both shots, the matching algo-
rithm dramatically improves the initial estimate.

Figures 2 and 3 show both the initial starting con-
ditions and final matches obtained using our combined
feature prediction and matching algorithms. Before dis-
cussing the matching results themselves, it is helpful to
provide some background on the imagery. The color im-
ages (shown in black and white here) are 150x150 pixel
squares cropped from the complete 720x480 image. For
Shot 20, the vehicle was roughly centered at the opti-
cal image axis. For Shot 35, the vehicle was roughly
50 pixels off optical axis. The color imagery was ob-
tained with a standard 35mm camera. The images were
digitized to a Kodak Photo Compact Disks. Predicted




a. Initial Orientation b. Initial Color Pose c. Initial LADAR Pose

d. Resulting Orientation e. Resulting Color Pose f. Resulting LADAR Pose

Figure 2: Local Search Results for Shot 20 Array 5 (M113 APC)

a. Initial Orientation b. Initial Color Pose c. Initial LADAR Pose

d. Resulting Orientation e. Resulting Color Pose f. Result‘ihg LADAR Pose

Figure 3: Local Search Results for Shot 35 Array 9 (M113 APC)

model features are shown as white lines, drawn on top ray of range values with 12 bit resolution. The field of

of the image. view of the current LADAR system is approximately 15°

horizontally and 3° vertically. The maximum range of

The range data was obtained with a LADAR sensor.  depth values is approximately 300m. The images show

The LADAR ranging device scans a scene in a series  the range data rendered as a set of 3D hollow polygons
of parallel vertical strips, generating a rectangular ar-
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Figure 4: Error Terms for Shot 35 Array 9 (M113

(GBSF94, GBSF95], from a viewpoint slightly above and
to the left of the sensor position. The actual LADAR
data is shown in light grey, and the predicted sampled
surface features are shown in black?.

Figures 2a, 2b, 2c show the initial pose estimate in
each sensor coordinate system for shot 20. Figures 2d,
2e, 2f show the results of the local search algorithm.
As can be seen, the algorithm corrects for a substan-
tial amount of error in the initial estimate. It took the
search algorithm approximately 30 moves to come to the
solution shown. On the order of 1500 evaluations of the
error function were performed. Figure 3 shows the re-
sults of the algorithm applied to Shot 35. Again, the
algorithm was able to account for a substantial amount
of error in the initial estimate.

Due to the interleaving of feature prediction and
matching, the match error function does not monoton-
ically decrease. The total error, along with the con-
stituent optical and range components, can be plotted.
Figure 4 shows the error plots for Shot 35, with the er-
ror term on the vertical axis, and the number of error
evaluations on the horizontal axis. Several observations
can be made about the graphs. The first is the rapid ini-
tial reduction in the error. The second is the relatively
jumpy character of the optical error as the algorithm
converges to the best set of coregistration parameters.
Both trends are side effects of the search strategy al-
ternating between adjustments to the sensor parameters
and adjustments to the image registration. These plots
also suggest that feature generation and matching are
interacting in subtle ways and more study is required to
better understand and characterize these interactions. It
should be that noted the optical feature set changes sig-
nificantly from start to finish, which suggests the cause
of the choppy error is due to abrupt changes in selected
features.

' This imagery was collected with a low resolution LADAR
and wide angle lens in order to approximate resolutions com-
parable to targets viewed at 1 to 2km with more modern
Sensors.

~1

........

5 Conclusion

By combining dynamic model feature prediction and lo-
cal search in coregistration space, we have demonstrated
the ability to find geometrically precise matches between
CAD models and multi-sensor data. Moreover, we have
done this with real data from a highly difficult object
recognition domain.

The time required to performn dynamic feature pre-
diction is relatively small, on the order of one second.
When compared to the time reguired by the iterative
search algorithm to test new matches it is not the most
significant factor. The benefit of performing scene spe-
cific lighting calculations to predict internal structure far
outweighs the slight run-time penalties. These internal
features allow us to solve problems which have proved
unsolvable using silhouette features alone. Future work
will refine the radiometric modeling used by this phase
of the algorithm: the current version while effective is
clearly very simple.

Our algorithm is able to substantially reduce errors
and generate visibly improved matches, however some
difficulties have been observed getting the algorithm to
arrive at precisely the best final solution. For example,
while the results shown above in Figure 3 are dramatic
improvements over the initial estimate, the nose of the
vehicle is still slightly up relative to the imagery. We are
examining techniques to improve the search method so
as to prevent premature termination, thereby improving
the match.
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